

Bimodal Imaging of Breast Cancer using Profile Diagrams and Convolution Neural Network

Chang-hee Won, Ph.D. CSNAP Lab Temple University, Philadelphia, USA ACPR 2021

Motivation

- American Cancer Society estimates that in 2021 in the United States
 - 300,000 women will be diagnosed with **invasive breast cancer**,
 - additional 50,000 with **non-invasive (in-situ) breast cancer**,
 - and about 45,000 women will **die** from breast cancer
 - Inflammatory Breast Cancer affects a small population but deadly
- While there are many advanced technologies for breast cancer detection, women from remote, rural, or underdeveloped communities have **limited access** to cancer screening
- There is a need for an inexpensive and easy-to-use breast cancer identification device.

Outline

- Background and Research Goals
- Bimodal Imaging: Tactile Imaging Probe
 - Tactile Profile Diagrams
 - Tactile Properties using CNN classification
- Bimodal Imaging: Multispectral Imaging Probe
 - Multispectral Profile Diagrams
 - Spectral Properties using CNN classification
- Breast cancer risk assessment
 - Multimodal Index
- Conclusions

Background

Mammography

- powerful screening method
- x-ray radiation
- high number of false positives

Ultrasound

- can show certain breast changes
- low spatial resolution
- low sensitivity

Magnetic Resonance Imaging (MRI)

- used for detailed examination
- costly
- limited specificity

Biopsy

- gold standard to confirm BC
- highly invasive
- cancerous tumors are sometimes missed

Background

- Breast cancer are often detected through **breast lumps**; however, in more rare cases such as IBC, **breast tissue changes without an underlying tumor**.
- Our breast cancer detection and characterization methods aim to quantify **tumor stiffness** or tissue **breast tissue physiologic changes.**
- Cancerous tumors are **stiffer** than benign lesions
 - **Tactile sensors** characterize tumor stiffness, location, and size
 - Most tactile sensors are electromechanical pressure sensors
- Breast tissue optical properties change when the tissue becomes malignant (angiogenesis and hypermetabolic activity)
 - Hyperspectral/multispectral imaging can characterize superficial optical properties of suspicious breast tissues
 - Hyperspectral imaging is available, yet costly and time consuming.

Research Goals

The primary goal of this research is to develop a **bimodal imaging system for breast tumor and tissue characterization** using tactile and multispectral imaging.

Tactile Imaging Probe's hardware and software are developed to measure tactile properties, such as the tumor size, stiffness, and depth within the breast tissue.

Multispectral Imaging Probe's hardware and software are developed to characterize superficial breast tissue properties, such as asymmetry, texture, and inflammation.

Finally, we developed the **Multimodal Index method** for individualized breast cancer risk assessment using two imaging modalities and the patient's health information.

Tactile Imaging Probe - Design

Malignant breast tumors tend to be stiffer and larger than benign tumors with tactile imaging modality, we characterize tumors' size, stiffness, and depth

Tactile Imaging Probe – Tumor Stiffness

Figure : Stiff and soft tumors under TIP compression

Stiffness Estimation

Deformation forceTIP sensing element deformation image $\Delta f_i = f_i - f_{ref}$ $\Delta M = M_i - M_{ref}$ Deformation Index of the imaged tumor $DI_i = \frac{\sum_{l=1}^{n} \sum_{k=1}^{m} \Delta M_i^{l,k}}{\Lambda f_i}$

TIP – Aquisition/Results

Figure : TIP connected to a laptop with TIP GUI

Figure : Acquired grayscale and colored tactile images

Figure : Result Calculation

Figure : GUI capture view

Tactile Imaging Probe - Imaging

Soft Tumor Size 15 mm

Stiff Tumor Size 15 mm

Each lesion will have about 50 tactile images

Tactile Imaging Probe - TPD

Tactile Profile Diagram is a representative pattern image, which encodes differential tactile information from a set of TIP images.

Figure : Construction of a Tactile Profile Diagram

Change in compression force Reduced image Change of deformation image

$$\Delta f_i = f_i - f_{ref}$$
$$\Delta R_i(m, n) = R_i(m, n) - R_{ref}(m, n)$$
$$\Delta W_i(m, n) = \Delta R_{max} - \Delta R_i(m, n)$$

Tactile Imaging Probe - TPDs

Figure : Examples of TPDs for the tumors with different size and stiffness

Tactile Imaging Probe – TPD Calculation

Figure : TPD segmentation for the tumor size and stiffness estimation

Size EstimationStiffness Estimation $D = aN_p + b$ $SI = \frac{\sum_m \sum_n G_{magS}(m, n)}{N_n}$

Classification with CNN

Figure : Image classification with CNN (Goodfellow, 2017)

Classification with CNN

Classification with CNN – TPD

Figure : Accurate tumor size estimation

Classification with CNN – Stiffness (also depth, size)

Figure : Stiffness CNN model (TPDModelStiffness)

Dataset

Sizes: 10 mm, 12 mm, 14 mm, 16 mm, 18 mm, 23 mm Soft Subset: 130 kPa – 316 kPa Stiff Subset: 376 kPa – 250 MPa Depths: 0 mm, 2 mm, 4 mm, 6 mm, 8 mm, 10 mm Data division: training 80% and validation 20%

Model trained on 6788 TPDs, validated on 1697 TPDs Training: 50 epochs, 200 TPDs in a batch

Classification with CNN – Stiffness

Figure : Graphs for TPDModelStiffness model accuracy and loss

Results Validation accuracy = 0.90

Figure : Examples of TPD classification with TPDModelStiffness

Classification with CNN – *in-Vivo* **Results**

Table : CNN classification results for the <i>in-vivo</i> data						
Patient	Depth		Stiffness		Size	
	US Est.	CNN	Doctor Est.	CNN	US Est.	CNN
	Class	Class	Class	Class	Class	Class
1	deep	shallow	soft	soft	small	small
2	shallow	shallow	stiff	stiff	small	small
3	shallow	shallow	stiff	stiff	small	large
4	shallow	shallow	soft	soft	medium	medium
5	shallow	shallow	stiff	stiff	medium	medium
6	shallow	shallow	soft	soft	medium	small
7	shallow	shallow	soft	soft	large	large
8	deep	deep	soft	soft	large	large
9	shallow	shallow	soft	soft	large	medium
10	deep	deep	soft	stiff	large	large
11	shallow	shallow	stiff	stiff	large	large
12	shallow	shallow	stiff	stiff	large	small
13	shallow	shallow	stiff	stiff	large	large
Accuracy		0.92		0.92		0.69

Multispectral Imaging Probe

Even without a palpable tumor, there is a possibility of aggressive breast cancer such as IBC, which manifests by a rapidly developing inflammation.

With multispectral imaging modality, we characterize IBC manifestations, such as asymmetry, texture, and inflammation.

Multispectral Imaging Probe

- Biological tissues have **non-homogeneous** optical properties
- Light **scatters** and gets **absorbed** within tissue

Figure : Light propagation in tissue **Figure :** Absorption of tissue chromophores

• Hyperspectral/Multispectral Imaging can help characterize tissues

Figure : Hypercube image vs. RGB image

Experimental Setup

Multispectral Imaging Probe

Imaging Camera

Bandpass Filters

Figure : Multispectral Imaging Probe components and experimental setup

Multispectral Imaging Probe – Image Processing

<u>Normalization</u>

Decreases the effect of inhomogeneous illumination and hardware-related noise

$$I_{norm} = \frac{I_{raw} - I_{dark}}{I_{white} - I_{dark}}$$

Registration

Searches for geometric transformation of multiple images of the same scene to align

Construction of Multispectral Profile Diagram

Carries unique information about the optical properties of breast tissue from four imaging bands consolidated in one pattern image.

Construction of Differential Multispectral Profile Diagram

Carries unique information about the breast tissue changes.

Multispectral Imaging Probe - MPD

Multispectral Images

Figure : Construction of Multispectral Profile Diagram

$$MPD_{M \times N} = \begin{bmatrix} \frac{c_{1,1}(a_{1,1}+b_{1,1})}{d_{1,1}}, & \frac{c_{1,2}(a_{1,2}+b_{1,2})}{d_{1,2}}, & \dots & \frac{c_{1,N}(a_{1,N}+b_{1,N})}{d_{1,N}} \\ \frac{c_{2,1}(a_{2,1}+b_{2,1})}{d_{2,1}}, & \frac{c_{2,2}(a_{2,2}+b_{2,2})}{d_{2,2}}, & \dots & \frac{c_{2,N}(a_{2,N}+b_{2,N})}{d_{2,N}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{c_{M,1}(a_{M,1}+b_{M,1})}{d_{M,1}}, & \frac{c_{M,2}(a_{M,2}+b_{M,2})}{d_{M,2}}, & \dots & \frac{c_{M,N}(a_{M,N}+b_{M,N})}{d_{M,N}} \end{bmatrix}$$

Multispectral Imaging Probe - Phantom

Figure : MIP Phantom implementation

MIP – Multispectral Profile Diagram

Multispectral Profile Diagram

Multispectral Profile Diagram with applied color map

Figure : Construction of Multispectral Profile Diagram

MIP – Enhanced Differential MPD

Figure : Differential Multispectral Profile Diagram construction **Texture Enhanced**

Figure : Texture enhancement using Differential Multispectral Profile Diagram

Classification with CNN - MPD

Figure : Multispectral Profile Diagram classification with CNN

Classification with CNN - Datasets

Less 2/3 inflammation

More 2/3 inflammation

Figure : Examples of Differential Multispectral Profile Diagrams Datasets

Classification with CNN – Asymmetry (also texture, inflammation)

Dataset

The samples were obtained from pairwise combinations of 240 affected and 6 normal MPDs of MIP samples with different combinations of phantom features. Data division: Training 75%, validation 20%, and test 5%.

Model trained on 30720 MPDs validated on 7656 MPDs tested on 1344 MPDs Training: 5 epochs, 100 MPDs in a batch

Classification with CNN – Asymmetry (also texture, inflammation)

Figure : Graphs for MPDModelAsymmetry model accuracy and loss

Results

training accuracy, 99%, validation accuracy, 100% test accuracy, 98%

Figure : Examples of TPD classification with MPDModelAsymmetry

Classification with CNN – Phantom Test Set

Figure : Independent classification test samples

Classification with CNN - Results

	Asymmetry CNN Class Prob.		Texture CNN Class Prob.		Inflammation CNN Class Prob.	
Sample						
	Sym.	Asym.	NotPit.	Pitted	Small Infl.	Large Infl.
1	1.00	0.00	1.00	0.00	0.96	0.04
2	1.00	0.00	1.00	0.00	0.99	0.01
3	1.00	0.00	1.00	0.00	0.96	0.04
4	1.00	0.00	1.00	0.00	0.02	0.98
5	1.00	0.00	0.01	0.99	0.99	0.01
6	1.00	0.00	0.00	1.00	1.00	0.00
7	1.00	0.00	0.12	0.88	0.23	0.77
8	1.00	0.00	0.00	1.00	0.36	0.64
9	0.00	1.00	1.00	0.00	0.76	0.24
10	0.00	1.00	1.00	0.00	1.00	0.00
11	0.00	1.00	1.00	0.00	0.01	0.99
12	0.00	1.00	0.99	0.01	0.03	0.97
13	0.00	1.00	0.01	0.99	0.97	0.03
14	0.00	1.00	0.05	0.95	1.00	0.00
15	0.00	1.00	0.14	0.86	0.00	1.00
16	0.00	1.00	0.99	0.01	0.69	0.31
Accuracy		1.00		0.94		0.88

Table : MPD classification results on an independent dataset

Note: The gray color indicates true Asymmetry class samples, the green color shows the true Pitted class samples, and the pink color highlights the true Large Inflammation class samples. Misclassified samples are indicated with red font color.

Multimodal Index

Figure : Block diagram for Multimodal Index computation

Multimodal Index – BCRAT Index

- The BCRAT Index is the individual risk of developing breast cancer established by NCI based on Gail statistical model
- The online BCRAT calculation tool is publicly available.
- Does the woman have a medical history of any breast cancer or of ductal carcinoma in situ (DCIS) or lobular carcinoma in situ (LCIS) or has she received previous radiation therapy to the chest for treatment of Hodgkin lymphoma?
- Does the woman have a mutation in either the BRCA1 or BRCA2 gene, or a diagnosis of a genetic syndrome that may be associated with elevated risk of breast cancer?
- 3. What is the patient's age?
- 4. What is the patient's race/ethnicity?
 - a. What is the sub race/ethnicity or place of birth?
- 5. Has the woman ever had a breast biopsy?
 - a. How many breast biopsies (positive or negative) has the woman had?
 - b. Has the woman ever had a breast biopsy with atypical hyperplasia?
- 6. What was the woman's age at the time of her first menstrual period?
- What was the woman's age when she gave birth to her first child?
- How many of the woman's first-degree relatives (mother, sisters, daughters) have had breast cancer?

Figure : The BCRAT calculator questions

5–Year Risk of Developing Breast Cancer					
Patient Risk	Average Risk				
0.4%	0.3%				
Lifetime Risk of Developing Breast Cancer					
Patient Risk	Average Risk				
10.4%	12.6%				

Figure : Example of the NCI BCRAT calculator results

Multimodal Index

Tactile Index

 $Index_{T} = \alpha_{1}P_{11} + \alpha_{2}P_{12} + \alpha_{3}P_{13},$

Spectral Index

 $Index_{S} = \beta_{1}P_{21} + \beta_{2}P_{22} + \beta_{3}P_{23},$

BCRAT Index

 $Index_{BCRAT} = P_{31},$

Multimodal Index

 $Multimodal \ Index = w_1 Index_T + w_2 Index_S + w_3 Index_{BCRAT},$

Multimodal Index – Phantom

Figure : Bimodal imaging phantom design

Figure : Bimodal imaging phantom implementation

Multimodal Index – Results

Table : Multimodal Index Results

TPD Sample	MPD Sample	Tactile Index	Spectral Index	Multimodal Index
1 shallow	1	0.62	0.01	0.19
2 shallow	2	0.31	0.59	0.51
3 shallow	3	0.70	0.63	0.65
4 shallow	4	0.54	0.20	0.30
5 shallow	5	0.70	0.41	0.50
6 shallow	6	0.41	0.97	0.80
1 deep	1	0.50	0.01	0.15
2 deep	2	0.65	0.59	0.61
3 deep	3	0.72	0.63	0.66
4 deep	4	0.42	0.20	0.27
5 deep	5	0.73	0.41	0.51
6 deep	6	0.47	0.97	0.82

Note: The darker is the gray color of a cell in the Multimodal Index results column, the higher mimicked cancer probability is for that case. The white colored cells in the last column indicate mimicked benign cases. The dark gray colored cells show mimicked malignant cases.

Conclusions

- We developed the **bimodal imaging system** and its calculation **algorithms** to capture tactile and multispectral properties of breast tumors and tissues.
- We explained the novel **Profile Diagrams** method We capture, encode, and analyze tactile and multispectral imaging signals as pattern images in the application meaningful way.
- In **TIP experiments**, we classified tumors based on depth, size, and stiffness using TPDs and CNN. We also quantified the size and stiffness of tumors. TIP can be used to differentiate malignant from benign tumors.
- In MIP experiments, we classified superficial breast tissues based on asymmetry, texture, and inflammation factors using MPDs and CNN. MIP can help screening for inflammatory breast cancer.
- We developed the method to calculate the individualized **Multimodal Index** for patients based on the imaging data from TIP and MIP modalities, and the individual breast cancer risk.

Thank you!